

Course Specifications

Institution: Majmaah University college of education- Zulfi

Academic Department : **Department of chemistry**

Programme: Chemistry

Course: General Chemistry (1) physical

Course Coordinator : Ibtehag ELhassan
Programme Coordinator : Dr.Gehan Laaemary

Course Specification Approved Date: 28/12/1436 H

A. Course Identification and General Information

1 - Course title : General chemi physical	nistry (1) Course Code: CHEM 111				
2. Credit hours: (2)					
3 - Program(s) in which the cou	urse is offered: Bachelor degree of chemistry				
4 – Course Language: Arabic	c language				
5 - Name of faculty member res	esponsible for the course: Ibtehag ELhassan				
6 - Level/year at which this cou	urse is offered: (1) Level				
7 - Pre-requisites for this course	se (if any) :				
8 - Co-requisites for this course	e (if any):				
General chemistry (1) labor					
9 - Location if not on main cam	-				
Majmaah University (college of education- Zulfi)					
10 - Mode of Instruction (mark	c all that apply)				
A - Traditional classroom	- What percentage? 30 %				
B - Blended (traditional and online)	0 What percentage?				
D - e-learning - What percentage? 70 %					
E - Correspondence	0 What percentage?				
F - Other	0 What percentage?				
Comments:					

B Objectives

What is the main purpose for this course?

This course is aimed to give basic concepts of physical chemistry. Recognize the fundamental information about the gaseous state of matter. Familiarize intermolecular forces, liquid and solid states. Know the elementary thermodynamics and thermo chemistry and their applications. Enable the students to have an idea about types of solutions, concentration units, adsorption, fractional and steam distillations, effects of temperature and pressure on solubility.

Briefly describe any plans for developing and improving the course that are being implemented:

- 1- Electronic materials and computer based programs have been utilized to support the lecture course material.
- 2-The course material was posted on the website that could be accessed by the students enrolled in the course only.

C. Course Description

1. Topics to be Covered

List of Topics	No. of Weeks	Contact Hours
 Units of measurement 	3	3
Gaseous State:		
Boyle's law		
 Charles's law and Kelvin scale of temperature 		
 Application of Charles's law and Boyle's law 		
 Combined gas law, ideal gas equation and universal gas 		
constant		
 Dalton's law of partial pressure 		
 Mathematical derivation of Dalton's law and their 		
applications		
 Graham's law of diffusion and its applications 		
Kinetic model of gas and its postulates		
Liquid State:	3	3
Physical properties of liquid		
Evaporation and condensation		
Vapour pressure of liquid and boiling		
Surface tension		
• Viscosity		
Maxwell-Boltzmann distribution		
boiling point		
Latent heat of vaporization		
• freezing point		
Solid State:	2	2

	_	
 Physical properties of solid Crystalline and amorphous solids Types of crystal system 		
 Modes of expressing concentration of solution: Condensation and solubility Mass-mass relationship Mass- volume relationship 	3	3
 Chemical equilibrium Reversible and irreversible reactions Law of mass action Equilibrium constant (Kc) and its characteristics Homogenous and heterogeneous equilibrium Le-chatelier's principle and its application 	3	3
General chemistry (1) laboratory. Laboratory safety rules - detection of Acid and basic radicals of simple salt	14	28

2. Course components (total contact hours and credits per semester):

	Lecture	Tutorial	Laboratory	Practical	Other:	Total
Contact Hours	14		28			42
Credit	2					2

3. Additional private study/learning hours expected for

2

students per week.

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

	ignment with Assessment Methods and Teaching Strategy					
	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods			
1.0	Knowledge					
1.1	By the end of this course the students will be able to:	Lectures	In class quizzes			
	Define the basic concepts of physical chemistry.	Tutorial discussions	Major and final exams			
	 Define Vapour pressure of liquid and boiling Surface tension Viscosity, boiling point, Latent heat of vaporization, freezing point 	Homework assignments	lab practical exam			
	Understand the main theories and laws of thermo chemistry, gases and equilibrium	Laboratory work and assignment.				
2.0	Cognitive Skills					
2.1	By the end of the course students should be able to: Use the knowledge of physical chemistry to solve problems Use knowledge and understanding of essential facts, concepts principles and theories relating to course problems Analyze novel problems and make Strategies for their solution Perform problems related to the course content List different types of solids	Homework assignments Problem solving in the tutorial	In class quizzes Major and final exams			
2.3	Implement Le-Chatelier principle					
2.4	Describe chemical equilibrium, and perform calculations on the equilibria (acid / base equilibria)					
2.5	Explain the basics of the kinetic theory of gases					

	NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods
2.6	Recognize and describe the use of laboratory equipment, such as burettes, pipettes and flasks.		
3.0	Interpersonal Skills & Responsibility		
3.1	 By the end of the course students should be able to: work in teams as well as independently Taking responsibility for Learning. To think and solve problems in cooperative work with others. Manage resources, time and other members of the group. 	Encourage students to make decisions about how they learn best Solving problems in groups during tutorial Group assignments	Grading homework assignments
4.0	Communication, Information Technology, Numer	rical	
4.1	By the end of the course students should have the ability to make effective use of computers in chemistry applications, including: • Using a computer as a tool in writing, drawing chemical structures and data analysis to communicate scientific information • Use software and Surf internet for course contents. • Report writing	Incorporating the use and utilization of computer in the course requirements Encourage students to use online and library resources	Evaluating the written reports
5.0	Psychomotor		
5.1			

NQF Learning Domains And Course Learning Outcomes	Course Teaching Strategies	Course Assessment Methods

5. Schedule of Assessment Tasks for Students During the Semester:

	Assessment task	Week Due	Proportion of Total Assessment
1	Class activates (in class quizzes, and homework)	Weekly	10%
2	Med- term exam	7	20%
3	lab practical exam	8	10%
4	Final lab exam	15	20%
5	Final exam	17	40%

D. Student Academic Counseling and Support

- Each group of students are assigned to a member of staff who will be available for help and academic guidance office hours at specific (1) h on daily basis
- E-mail communication

E. Learning Resources

1. List Required Textbooks:

- General chemistry (alkimya'a ala'amah by Adel Ahmed)

2. List Essential References Materials :

- Chemistry: Principles and Reactions by William L. Masterton, Cecile N. Hurley, Hardcover: 756 pages, Publisher: Brooks Cole, 5 edition, 2003
- Chemistry, 7th edition, Chang, 2006

3. List Recommended Textbooks and Reference Material:

- Chemistry: Matter and Its Changes, James E. Brady, Fred Senese
- General Chemistry: Principles and Modern Applications. 8th Edition by: Petrucci, Harwood, Herring
- Chemistry, 5th edition by Mortimer

4. List Electronic Materials:

- Websites on the internet that are relevant to the topics of the course
- Course-Lectures as videos (e.g. on YouTube) from Top (high ranked) Universities such as Harvard, MIT, and Stanford

5. Other learning material:

Multi media associated with the text book and the relevant websites

F. Facilities Required

1. Accommodation

- Lecture room with at least 35 seats
- Projector interactive whiteboard

2. Computing resources

Computer room containing at least 20 systems

3. Other resources

- Chemical laboratory
- Availability of equipment relevant to the course material

G Course Evaluation and Improvement Processes

1- Strategies for Obtaining Student Feedback on Effectiveness of Teaching:

- Course evaluation by student
- Students- faculty meetings

2 Other Strategies for Evaluation of Teaching by the Program/Department Instructor:

- Peer consultation on teaching
- Departmental council discussions
- Discussions within the group of faculty teaching the course

3 Processes for Improvement of Teaching:

- Conducting workshops given by experts on the teaching and learning methodologies
- Periodical departmental revisions of its methods of teaching

4. Processes for Verifying Standards of Student Achievement

- Providing samples of all kind of assessment in the departmental course portfolio of each course
- Assigning group of faculty members teaching the same course to grade same questions for various students. Faculty from other institutions are invited to review the accuracy of the grading policy
- Conducting standard exams such as the American Chemical Society exams or others.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement :

- The course material and learning outcomes are periodically reviewed and the changes to be taken are approved in the departmental and higher councils.
- The head of department and faculty take the responsibility of implementing the proposed changes.

Course Specification Approved Department Official Meeting No (3) Date 28 / 12 / 1436 H

Cours	e's Coordinator	Department Head		
Name: Ibtehag ELhassan		Name :	Geham Alomayr	
Signature :		Signature :		
Date :	28 / 12 / 1436 <i>H</i>	Date :	/ / H	

